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ABSTRACT

The Statistical Hurricane Intensity Prediction Scheme (SHIPS) is a multiple regression model for fore-

casting tropical cyclone (TC) intensity [both central pressure (Pmin) and maximum wind speed (Vmax)]. To

further improve the accuracy of the Japan Meteorological Agency version of SHIPS, five new predictors

associated with TC rainfall and structural features were incorporated into the scheme. Four of the five pre-

dictors were primarily derived from the hourlyGlobal SatelliteMapping of Precipitation (GSMaP) reanalysis

product, which is a microwave satellite-derived rainfall dataset. The predictors include the axisymmetry of

rainfall distribution around a TC multiplied by ocean heat content (OHC), rainfall areal coverage, the radius

of maximum azimuthal mean rainfall, and total volumetric rain multiplied by OHC. The fifth predictor is the

Rossby number. Among these predictors, the axisymmetry multiplied by OHC had the greatest impact on

intensity change, particularly, at forecast times up to 42 h. The forecast results up to 5 days showed that the

mean absolute error (MAE) of the Pmin forecast in SHIPS with the new predictors was improved by over 6%

in the first half of the forecast period. The MAE of the Vmax forecast was also improved by nearly 4%.

Regarding the Pmin forecast, the improvement was greatest (up to 13%) for steady-state TCs, including those

initialized as tropical depressions, with slight improvement (2%–5%) for intensifying TCs. Finally, a real-time

forecast experiment utilizing the hourly near-real-time GSMaP product demonstrated the improvement of

the SHIPS forecasts, confirming feasibility for operational use.

1. Introduction

While the skill of tropical cyclone (TC) intensity

forecasts has improved over the past two decades

(DeMaria et al. 2014), the improvement rate is lower

than that of TC track forecasts (Yamaguchi et al. 2017).

There are several reasons for this lower rate of im-

provement: dynamical and thermodynamical processes

and air–sea interactions that govern the intensity change

of TCs are very complicated and not completely

understood, observations within the inner core of a TC

are not necessarily available to forecasters in real time,

current numerical models do not necessarily reproduce

observed TC structures and intensity changes, and there

are uncertainties in TC intensity estimation.

In such challenging situations, the advent of skillful

statistical dynamical models has greatly contributed to

the improvement of intensity forecasts. The Statistical

Hurricane Intensity Prediction Scheme (SHIPS; DeMaria

and Kaplan 1994, 1999; DeMaria et al. 2005) is one of

the statistical–dynamical models used for intensity

forecasts. Since its first implementation for the Atlantic

basin in the early 1990s, the skill of SHIPS forecasts has

steadily improved. SHIPS is widely used in opera-

tional centers around the world and is one of the most
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accurate guidance models for TC intensity fore-

casts (e.g., Rappaport et al. 2012; Sampson and

Knaff 2014).

SHIPS is a multiple regression model that predicts

changes in TC intensity. Explanatory variables (here-

after predictors) used in the regression model include

climatology and persistence associated with the TC’s

initial intensity and intensity change in the past 12 h;

environmental conditions such as vertical wind shear

and sea surface temperatures (SSTs), which are com-

puted along the forecast TC track; and infrared (IR)

satellite information around the TC at the initial fore-

cast time. The SHIPS model also provides information

about the degree to which each predictor contributes to

intensity change in a way that can be examined by

forecasters.

In the western North Pacific (WNP) basin, the

Statistical Typhoon Intensity Prediction Scheme

(STIPS; Knaff et al. 2005), which is similar to SHIPS,

was developed and is used at the Joint Typhoon

Warning Center (JTWC). Recently, it was replaced

with SHIPS at JTWC to take advantage of the higher

temporal resolution output and new predictors in SHIPS

(Schumacher et al. 2013). More recently, the Meteoro-

logical Research Institute (MRI) of the Japan Meteoro-

logical Agency (JMA) set up a version of SHIPS that

predicts the minimum central pressure (Pmin) as well as

the maximum wind speed (Vmax) of TCs in the WNP

basin using output from the JMAGlobal Spectral Model

(GSM; see JMA 2018) (Yamaguchi et al. 2018). The

forecast results confirmed that the accuracy of SHIPS

with the GSM output was 23%–30% better than that

of the Statistical Hurricane Intensity Forecast model

(SHIFOR; Jarvinen and Neumann 1979; Knaff et al.

2003), which is a statistical model based on climatology

and persistence that is often used as a benchmark for the

evaluation of intensity forecast skill (e.g., Rappaport et al.

2012; Sampson and Knaff 2014). As of 2017, SHIPS is in

experimental use at the Regional Specialized Meteoro-

logical Center (RSMC) Tokyo, Japan.

Most of the SHIPS predictors measure the storm en-

vironment, based on the idea that intensity change and

maximum potential intensity (MPI) primarily depend

on environmental conditions. This type of information

was also readily available when SHIPS was first

developed. Intensity change, however, is also highly

dependent on convective activity and the TC’s diabatic

heating distribution. Observational studies have shown

that brightness temperatures Tb and rainfall amounts

observed by microwave satellites have a relation-

ship with the current and future intensity (e.g., Rao

and MacArthur 1994; Rao and McCoy 1997; Cecil and

Zipser 1999; Bankert and Tag 2002; Hoshino and

Nakazawa 2007; Kieper and Jiang 2012). The 85-GHzTb

provides information about the inner-core structure and

convective activity, and 19- and 37-GHz Tb provide

rainfall information. Cecil and Zipser (1999) showed

that the azimuthal mean 85-GHz Tb is related to the

future intensity. Hoshino and Nakazawa (2007) found

that 10- and 19-GHz Tb distributions were better cor-

related with TC intensity than 37- and 85-GHz Tb dis-

tributions. Kieper and Jiang (2012) used satellite

observations to show that the formation of an eyewall

ring consisting of low-level water clouds and warm rain

is related to subsequent rapid intensification (RI). More

recently, Shimada et al. (2017) showed that future in-

tensity change increases with increasing axisymmetry of

the inner-core rainfall distribution, using a microwave

satellite-based rainfall product, the Global Satellite

Mapping of Precipitation (GSMaP; Kubota et al.

2007, 2009).

The importance of the inner-core structure associated

with internal processes to TC intensity change has also

been verified from other perspectives. Hendricks et al.

(2010) showed that there is little difference in the envi-

ronmental conditions between TCs that experienced RI

and those that intensified at a normal rate, and con-

cluded that the intensification rate is controlled mostly

by internal dynamical processes, provided that envi-

ronmental conditions are favorable for intensification.

Miyamoto and Takemi (2013) performed an idealized

numerical simulation and demonstrated that the

axisymmetrization of potential vorticity around a TC is

important for the onset of RI. Miyamoto and Takemi

(2015) also demonstrated that the time taken for RI

onset depends on the Rossby number Ro of vortices at

the initial time, and that intensification starts earlier with

larger initial Ro. Chen et al. (2011) and Carrasco et al.

(2014) showed that the radius of maximum wind

(RMW) and the radius of 34-kt winds (1 kt ’
0.514ms21) have a negative correlation with intensity

changes in the next 24 h.

Based on these studies, the addition of predictors as-

sociated with TC structure has the potential to improve

SHIPS, in particular for the following two types of TCs:

1) large-sized, unorganized TCs and 2) intensifying TCs.

The former TCs typically originate from monsoon gyres

(Lander 1994) or monsoon troughs (Lander 1996). They

are characterized as large-scale vortices relative to their

maximum wind speed, with a lack of organized con-

vection near the center, and small rates of intensification

even in a favorable environment. Since the current

version of SHIPS does not explicitly include structural

information, when environmental conditions are favor-

able, it predicts intensification even for monsoon-gyre-

type TCs, which can lead to an overforecast of TC
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intensity. As for intensifying TCs, the current version of

SHIPS tends to underforecast their intensity (e.g., Jones

et al. 2006; Sampson and Knaff 2014; Cangialosi and

Franklin 2017). Predictors associated with the inner-

core structure may increase the rate of intensity change,

leading to a better forecast of intensification.

Previous studies have shown that the addition of mi-

crowave Tb predictors (e.g., mean Tb and maximum Tb

within 100-km radius from theTC center) derived from19-

and 85-GHz Tb data to SHIPS (referred to as SHIPS-MI)

can improve its accuracy (Jones et al. 2006, 2007; Jones

and Cecil 2007). Jones et al. (2006) showed that a 2%–

8% improvement was obtained from SHIPS-MI com-

pared with SHIPS without those predictors. However,

issues of temporally sparse microwave satellite obser-

vations and their latency prevented the operational

implementation of SHIPS-MI. In this study, we resolved

these issues by using hourly GSMaP products, one of

which is available to operational centers in near–real

time at constant time intervals and has a large devel-

opmental sample (more than 10 yr) to calculate re-

gression coefficients. We derived new predictors

associated with TC rainfall and structure mainly from

the GSMaP data.

The purpose of this study is to examine the degree to

which the intensity forecast accuracy can be improved if

rainfall and structural information are added to SHIPS.

In other words, the purpose is to examine how much the

rainfall and structural information at the initial time is

statistically related to the subsequent intensity change

within the framework of a multiple regression model.

For this purpose, we mainly used a GSMaP reanalysis

product, which has the highest accuracy among the

GSMaP family products. Then, we used a near-real-time

GSMaP product to examine the feasibility for

operational use.

This paper consists of four subsequent sections. We

describe the data used and the methods in section 2. In

section 3, we present forecast performance results.

Section 4 discusses the impact of inner-core structural

information on TC intensity forecasts. Section 5

contains a summary.

2. Data and methodology

In this section, we describe data sources of training

samples from 2000 to 2012 used for computing co-

efficients of the regression model, independent samples

from 2013 to 2016 used for forecast experiments, and the

verification of forecasts. Then, we introduce new pre-

dictors associated with the rainfall distribution and

structural features, followed by the design of forecast

experiments and their verification.

a. Data

For training samples and other purposes in this study,

best track data at 6-h intervals from the RSMC Tokyo

were used, including the intensity (both Pmin and

Vmax), the center position, and 30-kt wind radii R30

(largest and smallest R30 in eight orientations) of TCs

that attained tropical storm (TS) strength and above

during their lifetimes.Wind speeds in the best track data

are based on 10-min sustained wind speeds. The best

track data do not provide Vmax information for tropical

depressions (TDs) (Vmax , 34kt) and extratropical

cyclones. Thus, the training samples included TCs at TS

strength and above (Vmax$ 34kt), TDs 6h before they

intensified into TSs, and storms just when they weak-

ened to TDs or extratropical cyclones (Fig. 1a). In the

latter two cases, Vmax was assumed to be 30kt.

Training samples of atmospheric environmental

predictors were derived from the Japanese 55-year

Reanalysis (JRA-55) data (Kobayashi et al. 2015).

FIG. 1. (a) An example of a TC used for training samples. The

abscissa axis represents a storm life cycle from TD strength,

through TS strength and above, until extratropical cyclone

(L) stage or TD strength. (b) Initial intensities when a forecast is

performed. The abscissa axis represents the initial intensities in

a storm life cycle from TD strength, through TS strength and

above, until the L stage. A forecast is performed as long as the

GSM model has a TC at TD strength and above as of FT 5 0 h

(including a TD that weakened from a TS). (c) The Pmin and

Vmax forecasts used for verification. The abscissa axis repre-

sents forecast times up to 5 days when storm intensity at FT5 0 h

is TD strength.
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Predictors of IR Tb were derived from successive geo-

stationary satellite data that have been used in the JMA.

The SST dataset used to calculate an empirical MPI

(DeMaria and Kaplan 1994) was the Centennial

Observation-Based Estimates of SST (COBE-SST; Ishii

et al. 2005) because it was used for JRA-55 data as the

ocean boundary condition. Ocean heat content (OHC)

was calculated using ocean data [the Meteorological

Research Institute multivariate ocean variational esti-

mation system (MOVE/MRI.COM); Usui et al. (2006)].

We usedGSMaP data to extract rainfall and structural

information. The data are composed of microwave

satellite-based rainfall rate (mmh21) estimates with a

horizontal resolution of 0.18 (Aonashi and Liu 2000;

Aonashi et al. 2009; Shige et al. 2009). Microwave sat-

ellite data used in GSMaP include the Tropical Rainfall

MeasuringMission (TRMM)Microwave Imager (TMI),

the Advanced Earth Observing Satellite-II (ADEOS-II)

Advanced Microwave Scanning Radiometer (AMSR),

theAquaAMSR for Earth Observing System (AMSR-E),

the Global Change Observation Mission–Water

(GCOM-W1) AMSR2, the Global Precipitation Mea-

surement Core Observatory (GPM Core) Microwave

Imager (GMI), the Defense Meteorological Satellite

Program (DMSP) Special Sensor Microwave Imager/

Sounder (SSM/IS) series, the National Oceanic and

Atmospheric Administration (NOAA) Advanced Mi-

crowave Sounding Unit series (AMSU), and the Mete-

orological Operational Satellite Program of Europe

(MetOp) AMSU series. The product covers the area

from 608S to 608N, is available since 2000, and has a

range of reanalysis versions, a near-real-time version

(about 4-h latency) and a real-time version (almost no

latency; JAXA 2018a). These data are processed and

provided by the JAXA (JAXA 2018b). Because the

temporal resolution of microwave satellite-derived

rainfall estimates at each point is about 3–6h, hourly

estimates are obtained by two temporal interpolation

methods: the morph method and rainfall correction by

use of a Kalman filter (Ushio et al. 2009). Details of

GSMaP data for TC research are described by Shimada

et al. (2017). For training samples, we used the hourly

reanalysis product (the version 6 algorithm without the

gauge correction).

For independent samples in forecast experiments

(also see section 2c), we utilized data that had been

available to RSMC Tokyo in real time. Real-time TC

data at 6-h intervals generated by RSMC Tokyo were

used, including the intensity, the center position, and

R30. JMA GSM forecasts were used for atmospheric

environmental predictors. The domain of the data ar-

chived was from 108S to 658N and from 808E to 1708W
at a spatial resolution of 0.28 latitude and 0.258 longitude.

The GSM ran four times a day at 0000, 0600, 1200, and

1800 UTC. The GSM initialized at 1200 UTC ran to

11 days, and the others ran to 84 h from 2013 to 2015 and

to 132h in 2016.1 Thus, the number of forecast samples

decreased beginning from the 90-h forecast time (FT)

(FT 5 90h) through 5 days (FT 5 120 h). The Merged

Satellite and In Situ Data Global Daily Sea Surface

Temperature dataset (MGDSST; Kurihara et al. 2006)

TABLE 1. SHIPS predictors used in SHIPS-Base. Predictors

retained in the Pmin and Vmax models are denoted with a P or

V, respectively.

Predictor Description Model

1) MSLP Pmin at FT 5 0 h P, V

2) VMAX Vmax at FT 5 0 h —

3) VMA2 Square of VMAX V

4) OSLP Absolute of (MSLP 2 970) P

5) PER 12-h change in Pmin or Vmax P, V

6) PMPE (MSLP 2 880) 3 PER P

7) VMPE VMAX 3 PER V

8) POT MPI 2 VMAX P, V

9) POT2 Square of POT P, V

10) COHC Ocean heat content P, V

11) OHC2 Square of COHC P, V

12) T200 200-hPa temperature (r 5 200–800 km) P, V

13) T250 250-hPa temperature (r 5 200–800 km) P, V

14) ZNAL Zonal storm motion P, V

15) RHMD 700–500-hPa relative humidity (%) (r 5
200–800 km)

P, V

16) EPOS ue difference between lifted surface parcel

and environment

P, V

17) SHDC 850–200-hPa vertical shear magnitude

(r 5 0–500 km)

P, V

18) SHGC Generalized vertical shear parameter

(DeMaria 2010)

P, V

19) SHSH Square of SHDC P, V

20) SHLT SHDC 3 the sine of latitude P, V

21) SHVM SHDC/VMAX P, V

22) VMSH VMAX 3 SHDC V

23) PMSH (MSLP 2 880) 3 SHDC P

24) Z850 850-hPa absolute vorticity (r 5
0–1000 km)

P, V

25) D200 200-hPa divergence (r 5 0–1000 km) P, V

26) TWAT Tendency of 850-hPa tangential wind

(r 5 0–500 km)

P, V

27) TADV Temperature advection between 850 and

700 hPa (r 5 0–500 km)

P, V

28) TGRD Magnitude of temperature gradient

between 850 and 700 hPa (r 5
0–500 km)

P, V

29) PC30 Percent area of IR Tb , 2308C (r 5
50–200 km)

P, V

30) SDIR Standard deviation of IR Tb (r 5
0–200 km)

P, V

1 The 132-h model run was experimental and not for operational

use in 2016.
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was used for the empirical MPI because it was the GSM

ocean boundary condition. OHC was calculated using

the same data as the training data. As for the GSMaP

data, both the GSMaP reanalysis product and near-real-

time product (;4-h latency) were used. Rainfall esti-

mates of the reanalysis product are based on both past

and future satellite data, while estimates of the near-

real-time product are based only on past data. Thus, data

quality is much better for the former than for the latter.

We show the impact of GSMaP data used for the in-

tensity forecasts in section 3c.

b. New predictors

Most predictors used in the current version of SHIPS

with the GSM output (hereafter SHIPS-Base) are the

same as those of SHIPS used in the United States

(Table 1). Table 2 lists five new predictors that were

added to the Vmax and Pmin versions of SHIPS-Base

(hereafter SHIPS-GSMaP). The IR Tb-related pre-

dictors were removed because the accuracy was reduced

when they were included with the GSMaP predictors.

Among the five new predictors, four were mainly de-

rived from GSMaP data: axisymmetry of rainfall, rain-

fall areal coverage, radius of maximum rainfall, and total

volumetric rain. The value of Ro was derived from TC

data provided by the RSMC Tokyo.

These five predictors were selected by performing

stepwise regression (forward, backward, and stepwise

selections) using International Mathematics and Statis-

tics Library (IMSL) software. Initially, we prepared the

26 conventional predictors listed in Table 1 and 15

possible new predictors associated with rainfall amount

and structural features. These predictors were fed into

the regression. We counted the number of times each

predictor was retained during the forecast period up to

120 h at 6-h intervals in the three kinds of stepwise re-

gressions. Then, predictors that had relatively high fre-

quencies (at least more than 20%2) of selection in the

stepwise regressions were determined as new predictors.

The selected new predictors are defined below.

The axisymmetry g is the same as that of Miyamoto

and Takemi (2013) and is defined as

g(r, t)[
fl(r, t)2

fl(r, t)2 1

ð2p
0

f0(r, l, t)2 dl/2p

3 100, (1)

where f is a variable; r and l are the radial and tan-

gential directions, respectively; and t is time. We used

the rainfall rate from the GSMaP dataset for f in this

study. The azimuthal mean (axisymmetric component)

off is denoted by an overbar, and the deviation from the

azimuthal mean is denoted by a prime. We tested three

types of axisymmetry variables: an average over 0–300-km

radius from the center, an average over 0–100-km ra-

dius, and an average over 100–300-km radius. Among

the three axisymmetry predictors, we found that the first

one had the highest frequency of selection in the step-

wise regression.

Rainfall areal coverage is defined as the percent area of

rainfall over 0.1mmh21 in a specific region. As with

axisymmetry, three regions were prepared: a region over

0–300-km radius from the center, a region over 0–100-km

radius, and a region over 100–300-km radius. For the

Pmin forecast, a radius of 100–300km from the center,

whose region is usually outside of theRMW,was selected

in the stepwise regression. For the Vmax forecast, a ra-

dius of 0–300km from the center was selected. This pa-

rameter expresses the density of the rainfall area.

The radius of maximum rainfall is defined as the ra-

dius of the azimuthal mean maximum rainfall within

400-km radius from the center. This parameter is

extracted as a proxy for the RMW.

Total volumetric rain is the sum of rainfall in a specific

region. The same three regions as the rainfall areal

coverage were prepared. For the Pmin forecast, a radius

of 0–100 km from the center was selected in the stepwise

regression. For the Vmax forecast, a radius of 100–

300 km from the center was selected. This parameter is a

proxy for the magnitude of diabatic heating.

TABLE 2. Added predictors to SHIPS-GSMaP and excluded

predictors. Predictors retained in the Pmin and Vmax models are

denoted with a P or V, respectively.

In/out Predictor Description Model

In 31) AXIS Axisymmetry of rainfall structure

within 300-km radius 3 OHC

P, V

In 32) RCOV Rain percent area coverage

between 100- and 300-km radius

P

In 33) RCOV Rain percent area coverage within

300-km radius

V

In 34) RMAX Radius of maximum azimuthal

mean rainfall

P, V

In 35) RVOL Total volumetric rain within

100-km radius 3 OHC

P

In 36) RVOL Total volumetric rain between 100-

and 300-km radius 3 OHC

V

In 37) ROSB Rossby number P, V

Out 29) PC30 Percent area of IR Tb , 2308C
(r 5 50–200 km)

—

Out 30) SDIR Standard deviation of IR Tb (r 5
0–200 km)

—

2 This valuewas set so that the one that had the highest frequency

of selection among three similar types of variables could be

determined.
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The amplitudes of a wavenumber-1 rainfall asymme-

try averaged over each of the three regions described

above were also examined. However, none of the three

parameters were retained with relatively high frequency

(more than 20%) of selection in the stepwise regression.

The parameters derived from the GSMaP data were

obtained at 1-h intervals, but we applied a 5-h running

mean (FT525; 0 h) to eliminate biases dependent on

the satellite data used in the hourly GSMaP data.

Shimada et al. (2017) showed that biases between sat-

ellites can be eliminated if a 6-h running mean is applied

and that the effective signal related to intensity change

can be detected by the running mean.

Generally, Ro is defined as

R
o
[

Vmax

R
m
f

, (2)

where Rm is the RMW, and f is the Coriolis parameter.

Unfortunately, the best track data used in this study do

not haveRMW information. Instead ofRm, we prepared

two alternatives: the use of R30 and the use of

153R30/Vmax, which is equivalent to Rm derived from

R30 and the Rankine vortex structure. The stepwise re-

gression selected the use of R30. For TDs, we used a

value of 176km as R30, the mean value of the smallest

R30 of TCs with a Vmax of 35 kt in the training sample.

The new parameters have values at FT 5 0 h and are

not dependent on forecast times. However, no matter

how favorable the rainfall and structural conditions are

at the initial time for subsequent intensification, a TC

does not intensify unless favorable environmental con-

ditions are maintained along the future track. In fact, we

found that when each value of the axisymmetry and total

volumetric rainfall was multiplied by OHC along a

forecast track, the accuracy improved. In addition, the

multiplication of the total volumetric rainfall by OHC

can avoid multicollinearity between the total volumetric

rain and the rainfall areal coverage.3 Thus, we decided

to multiply each value of those two parameters by OHC

(Table 2). In section 3a, we will present this effect on the

improvement of accuracy.

Training samples for the period from 2000 to 2012

were used to calculate coefficients for SHIPS-Base and

SHIPS-GSMaP. The predictors were normalized by

subtracting their means and dividing by their standard

deviations. This normalization enables us to compare

the magnitude of coefficients for different predictors.

Figure 2 shows the relative contributions of the new

predictors to intensity change. The magnitude of the

axisymmetry (AXIS) coefficients in the first half of the

forecast period is generally greatest among the new

predictors and is one of the 5–10 strongest predictors out

of 29 predictors.

The AXIS of Pmin contributes to intensification from

FT5 6 to 84h when its value is above average, whereas

it contributes to weakening after FT 5 90h when its

value is above average (Fig. 2a). Other new predictors of

Pmin contribute slightly to intensity change. Rain per-

cent area coverage (RCOV), total volumetric rain

(RVOL), and Rossby number (ROSB) contribute to

intensification when each value is above average. The

radius of maximum rainfall (RMAX) contributes to in-

tensification from FT 5 6 to 66 h and contributes to

weakening after FT 5 72h when its value is below av-

erage (i.e., smaller radius of maximum rainfall), al-

though the magnitudes of the RMAX coefficients are

quite small.

Contributions of RMAX and RVOL to Vmax change

differ from those of Pmin change (Fig. 2b). The RMAX

of Vmax contributes to intensification throughout the

forecast period when its value is below average (i.e.,

smaller radius of maximum rainfall). RVOL contributes

to weakening from FT 5 6 to 48 h and contributes to

intensification after FT 5 54h when its value is above

average.

The signs of the coefficients of the new predictors

are generally physically reasonable and consistent with

previous studies. AXIS is consistent with the results of

Miyamoto and Takemi (2013), Zagrodnik and Jiang

(2014), Alvey et al. (2015), and Shimada et al. (2017),

who showed that symmetric structure is correlated with

intensification. RCOV and RVOL of Pmin are consis-

tent with the results of Jiang and Ramirez (2013), who

found that rainfall in the inner-core region is at least

moderate to heavy (i.e., total raining area . 3000km2,

total volumetric water . 5000mmh21 km2) in TCs be-

fore the onset of RI. RMAX is consistent with the

findings of Chen et al. (2011) and Carrasco et al. (2014),

under the assumption that RMAX is a proxy for the

RMW. ROSB is consistent with the findings of

Miyamoto and Takemi (2015).

c. Design of the forecast experiments and
their verification

Forecast experiments were performed for TCs over

the ocean from 2013 to 2016, completely independent of

the training samples. Two kinds of SHIPS-GSMaP

forecasts were run. One used the reanalysis GSMaP

product to examine how much the accuracy improves

when the quality of rainfall and structural information is

as good as possible. Center positions used to extract

3 The correlation coefficient between the total volumetric rain

and the rainfall areal coverage was ;0.3.
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parameters from GSMaP data were taken from the best

track data. Similarly, the Rossby number was computed by

using the best track data. The other used the near-real-time

product to examine the feasibility of SHIPS-GSMaP for

operational use (hereafter ‘‘real-time SHIPS-GSMaP’’ to

discriminate between two SHIPS-GSMaP forecasts). In

real-time SHIPS-GSMaP, the center positions were

from the real-time TC data. The Rossby number was

also computed by using the real-time TC data. The

latencies of the near-real-time GSMaP product and

the GSM output are almost the same (;4 h), which

makes it possible to run real-time SHIPS-GSMaP

operationally.

Forecasts were made for TCs that were recorded in

the best track data (Fig. 1b). The forecasts included

systems that were at least TDs as of FT5 0 h. A forecast

was continued up to 5 days as long as theGSM predicted

the existence of the system (even if it evolved into an

extratropical cyclone in the model) and the system was

within the domain of the archived GSM data. However,

the forecast was stopped after a TC made landfall in the

GSM forecast or when environmental predictors were

not computed due to the limitations of the data domain,

including predictors calculated out to a radius of

1000km from the center of the TC. For practical use of

SHIPS, when Pmin was forecast to be above 1010hPa,

the Pmin forecast was corrected to 1010hPa. Similarly,

when Vmax was forecast to be below 30kt, Vmax was

corrected to 30kt. This correction is justified because the

GSM still forecasts the existence of the storm at that

time. We confirmed that the impact of this correction

on the rate of improvement in SHIPS was negligible

(not shown).

For verification, SHIPS forecasts were compared to

the best track data. If there was no reference data in the

best track, the forecasts were excluded from the verifi-

cation. For Pmin forecasts, the verification included all

TCs and extratropical cyclones that were recorded in the

best track data (Fig. 1c), provided that SHIPS forecast

them. The timing of the extratropical transition is, in

general, different between the real-time and best track

data. We considered that to evaluate the effect of the

new predictors during the weakening stage including

extratropical transition, it is convenient for verification

to include storms that had already experienced extra-

tropical transition in the best track data. For Vmax

FIG. 2. (a)Normalized SHIPS-GSMaP predictor coefficients for Pmin fromFT5 6 to 120 h.

All predictor coefficients of FT5 6–120 h are plotted in each predictor box. The sign of each

coefficient is reversed so that a positive coefficient contributes to the decrease in Pmin (i.e.,

intensification) when the corresponding predictor value is above average. (b)As in (a), but for

Vmax. A positive coefficient contributes to the increase in Vmax when the corresponding

predictor value is above average. The new predictors are indicated by the red color.

DECEMBER 2018 SH IMADA ET AL . 1593

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 09/26/22 04:45 PM UTC



forecasts, the verification included all forecasts that had

reference Vmax data in the best track. In a case where a

stormwas of TD strength as of FT5 0 h but it intensified

to TS strength at a certain forecast time, forecasts after

that time were included in the verification (Fig. 1c).

We applied paired Student’s t-test statistics with a

two-sided test to confirm the improvement of the accu-

racy, given a null hypothesis that the average of the

difference in absolute errors between SHIPS-Base and

SHIPS-GSMaP is zero. Here, we have to consider the

number of samples. As pointed out by Aberson and

DeMaria (1994), we cannot assume that all forecasts are

completely independent because forecasts for the same

TC can be correlated. For example, a forecast error at

FT 5 48 h initialized at a particular time can be

correlated to that at FT5 48h initialized at 6 h later for

the same TC. In this study, following a method de-

veloped by Wilks (2006) and Jones et al. (2006), we

calculated lag-1 (i.e., 6-h lag) autoregression to forecast

errors at a particular forecast time and we introduced

the effective sample size Ne as

N
e
5N

(12 r
1
)

(11 r
1
)
, (3)

where N is the actual sample size and r1 is the lag-1

autoregression coefficient. Table 3 lists results of r1 and

Ne. The correlation coefficients lay between 0.4 and 0.9,

which led to the large decrease in the number of sam-

ples. Nevertheless, the number of samples was greater

than 80 up to FT 5 96 h, which was sufficient to

perform a significance test.

Intensity change based on the best track data was used

to classify TCs as steady state, intensifying, and weak-

ening, following the definitions used in Jones et al.

(2006); TCs with Pmin changes , 210hPa (or Vmax

changes $ 15kt) over a particular forecast duration

(from the initial time to each forecast time) are classified

as intensifying TCs, TCs with Pmin changes . 110hPa

(or Vmax changes # 215kt) are weakening TCs, and

others are steady-state TCs. Note that by definition, there

are cases that are classified as steady-state TCs that

actually experience both intensification and weakening

during the forecast period. However, because SHIPS is a

model for predicting intensity change over a particular

period, this definition is reasonable for verifying the

performance of SHIPS.

3. Forecast results

In this section, we show the model performance. We

mainly show the results of Pmin forecasts for which the

addition of the new predictors had a larger impact on the

improvement than for the Vmax forecasts. First, we

show the results when the GSMaP reanalysis product

was used. Then, we present some forecast examples and

TABLE 3. Actual sample sizes N, effective sample sizes Ne, lag-1 autocorrelation coefficients r1, averages of the difference in absolute

errors between SHIPS-Base and SHIPS-GSMaP, and Student’s t statistic t for Pmin and Vmax, respectively. Boldface values in the

t-statistic column are statistically significant at the 95% significant level with a two-sided test.

Pmin Vmax

FT (h) N Ne r1 Diff in MAE t N Ne r1 Diff in MAE t

6 2438 774 0.52 0.09 3.49 2012 759 0.45 0.03 1.16

12 2362 636 0.58 0.23 4.92 1978 621 0.52 0.12 2.75

18 2273 564 0.60 0.39 5.51 1930 526 0.57 0.22 3.32

24 2172 420 0.68 0.57 5.29 1859 390 0.65 0.33 3.44

30 2073 321 0.73 0.67 4.55 1766 310 0.70 0.36 2.95
36 1982 251 0.78 0.73 3.86 1673 242 0.75 0.37 2.52

42 1881 198 0.81 0.74 3.38 1579 213 0.76 0.37 2.36

48 1798 180 0.82 0.70 3.06 1493 184 0.78 0.39 2.44

54 1711 165 0.82 0.63 2.82 1399 166 0.79 0.36 2.23
60 1628 147 0.83 0.57 2.57 1325 143 0.81 0.36 2.14

66 1547 127 0.85 0.58 2.54 1247 128 0.81 0.33 2.00

72 1470 120 0.85 0.53 2.40 1166 112 0.82 0.30 1.79

78 1398 110 0.85 0.45 2.12 1092 98 0.84 0.32 1.80

84 1316 100 0.86 0.34 1.52 1020 98 0.82 0.32 1.61

90 471 91 0.68 0.45 1.99 367 87 0.62 0.38 1.94

96 433 87 0.66 0.41 1.72 340 81 0.61 0.30 1.54

102 406 76 0.68 0.41 1.64 316 74 0.62 0.30 1.45

108 377 86 0.63 0.45 1.94 284 77 0.58 0.23 1.12

114 349 89 0.59 0.42 1.89 260 70 0.58 0.20 0.99

120 323 63 0.67 0.39 1.61 237 55 0.62 0.19 0.97
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discuss what is improved andwhat is unresolved. Finally,

we show the results of real-time forecasts.

a. Forecast performance

We compared SHIPS-GSMaP with SHIPS-Base

(Table 3; Fig. 3). The performance of Pmin and Vmax

at each forecast time in SHIPS-GSMaP (Fig. 3a) showed

that the mean absolute error (MAE) of Pmin was

12.5 hPa at FT 5 48 h, 14.7 hPa at FT 5 72h, and

;16.5 hPa after FT 5 90h. The MAE of Vmax was

11.0 kt at FT 5 48h and ;13kt after FT 5 72 h. The

discontinuity of the MAE between FT 5 84 and 90h is

due to the decrease in the number of GSM forecasts

during the years 2013–15, as described in section 2a. The

MAEs of Pmin and Vmax in SHIPS-GSMaP were

smaller than those in SHIPS-Base for all forecast times.

The improvement rate (Fig. 3b) indicated that the Pmin

forecasts in SHIPS-GSMaP outperformed those of

SHIPS-Base by 2%–7%, while the Vmax forecasts im-

proved by 1%–4%. The improvement was statistically

significant at the 95% confidence level for Pmin fore-

casts for the period FT 5 6–78h and for Vmax for the

period FT 5 12–66h. The improvement in Pmin was

greater than that of Vmax up to FT 5 78h. Improve-

ment was maximized at FT 5 30h for Pmin (just over

6%) and at FT5 24h forVmax (near 4%). Thus, rainfall

and structural information at FT 5 0 h definitely im-

proved the accuracy of SHIPS, mainly in the first half of

the forecast period. This result is consistent with that of

Jones et al. (2006).

We examined the reason why the improvement rates

for Pmin and Vmax were different. The verification of

Pmin forecasts in Fig. 3b included TD cases at FT 5 0 h

(Fig. 1c). If the verification was performed only for TD

cases at FT 5 0h, the improvement rate became very

high, reaching ;20% (Fig. 4a). For non-TD cases at

FT 5 0 h, the improvement rates of Pmin and Vmax

were almost the same (Fig. 4b). The great improvement

for TD cases was caused by the suppression of over-

forecasting (i.e., negative biases) of Pmin for steady-

state and intensifying TCs (Fig. 5a). In contrast, for

non-TD cases (Fig. 5b), intensifying TCs had positive

biases (i.e., underforecasting) for Pmin, which were not

decreased by the new predictors. In addition, for non-

TD cases negative biases of steady-state and weakening

TCs improved little.

The improvement rate of the MAE stratified by types

of Pmin change (Fig. 6a) showed that the performance

of the Pmin forecasts for steady-state TCs improved by

over 10% during the period FT 5 24–48h. The

FIG. 3. (a)MAEs (hPa for Pmin, kt for Vmax) of SHIPS-Base and SHIPS-GSMaP forecasts

up to 5 days ahead for independent samples from 2013 to 2016 for theWNP basin. (b) Percent

improvement of SHIPS-GSMaP MAEs relative to SHIPS-Base MAEs from 2013 to 2016 in

the WNP basin (blue and red lines). Bold lines with filled circles indicate statistically sig-

nificant differences at the 95% level. The bar chart shows the number of samples (light blue

for Pmin, light orange for Vmax).
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performance for intensifying TCs was slightly im-

proved (2%–5%), whereas the performance for weak-

ening TCs was not changed. As shown in Figs. 4 and 5,

the suppression of overforecasting for weak initial TCs,

including TDs, contributed to the substantial improve-

ment of steady-state TCs.Wedescribe the reasonwhy the

new predictors suppressed the overforecasting in the next

subsection. For Vmax change (Fig. 6b), intensifying and

steady-state TCs improved by a few percent. In contrast,

the performance for weakening TCs was not changed.

To examine the improvement rate stratified by some

conditions, MAEs of Pmin forecasts at FT 5 48h were

plotted relative to the initial intensity (Fig. 7a), the ac-

tual intensity change (Fig. 7b), and the forecast intensity

change (Fig. 7c). MAEs were decreased by the new

predictors at initial intensities of 960 hPa and greater,

where forecast samples accounted for 74% of the total.

In particular, the improvement rate generally increased

with increasing initial Pmin. This result is consistent with

the great improvement for TD cases. MAEs relative to

the actual intensity change indicated that improvement

was seen at intensity changes between220 and 10hPa in

48 h, where the number of samples was greater than 80

in each bin (Fig. 7b). This result is related to the large

improvement for steady-state TCs. For intensifying TCs

whose Pmin fell between 255 and 285 hPa in 48h,

MAEs in SHIPS-GSMaP were decreased, although the

number of samples was less than 50 in each bin and the

MAEs were still very large. MAEs relative to the fore-

cast intensity change indicated that the peak of the

samples was slightly displaced in the positive direction

as a result of the suppression of overforecasting (Fig. 7c).

In addition, the range of forecast intensity changes by

SHIPS was narrower than the actual range shown in

FIG. 4. (a) As in Fig. 3b, but for TD cases at FT 5 0 h (Pmin only). (b) As in Fig. 3b, but for

non-TD cases at FT 5 0 h.

FIG. 5. Biases of the SHIPS-GSMaP and SHIPS-Base Pmin

forecasts stratified by intensifying, weakening, and steady-state

TCs. (a) TD cases at FT 5 0 h. (b) Non-TD cases at FT 5 0 h.

Results with numbers of samples less than 50 are not shown.
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Fig. 7b. The MAE increased when increasing the fore-

cast intensity change.

We usedAXIS andRVOLmultiplied byOHC in this

study. To examine the effect of the multiplication, we

also tested SHIPS-GSMaP without the multiplication

of OHC. The improvement was 1%–3% over SHIPS-

Base, with little difference in the improvement be-

tween the Pmin and Vmax forecasts, and there was no

peaked improvement for Pmin forecasts in the first half

of the forecast period (Fig. 8a). By the multiplication of

OHC, AXIS coefficients became greater (Figs. 8b,c),

which greatly contributed to the decrease in negative

biases of Pmin forecasts for TD cases (Fig. 5a) and

contributed to the increase in the maximum improve-

ment rate from 8% (not shown) to 20% (Fig. 4a) for TD

cases. Weak TDs tend not to intensify shortly after

their generation even when located over a high-OHC

region. Forecast accuracy for such cases was greatly

improved by the use of AXIS multiplied by OHC. In

the next subsection, we present an example of the

improvement.

b. Case study

As an example of the substantial improvement of TD

cases, Fig. 9a shows a forecast result of a TD initialized at

1200 UTC 29 September 2013. This TD upgraded to TS

Fitow (2013) in 30h and reached typhoon strength in

120h, at 1200 UTC 4 October 2013. Figure 9b shows

contributions from OHC (a predictor named COHC)

in SHIPS-Base, as well as COHC and AXIS in SHIPS-

GSMaP, during the period FT 5 6–72 h. In this fore-

cast, contributions from the new predictors except

AXIS, and differences in contributions from all other

predictors between SHIPS-Base and SHIPS-GSMaP,

were less than 4 hPa. The axisymmetry was very

small, 29, at FT 5 0 h, while OHC was greater

than 140 kJ cm22 up to FT 5 54 h. SHIPS-Base fore-

cast intensification because of the very high OHC. In

contrast, in SHIPS-GSMaP, the contribution from

COHC was greatly decreased and the contribu-

tion from AXIS was relatively small. As a result,

FIG. 6. Percent improvement of SHIPS-GSMaP MAEs relative

to SHIPS-Base MAEs from 2013 to 2016 in the WNP basin strat-

ified by intensifying, weakening, and steady-state TCs for (a) Pmin

and (b) Vmax. Results with numbers of samples less than 50 are

not shown.

FIG. 7. SHIPS-Base and SHIPS-GSMaP MAEs for 48-h in-

tensity forecasts in 5-hPa bins stratified by (a) best track ini-

tial intensity, (b) actual 48-h intensity change, and (c) forecast

48-h intensity change. Dashed lines represent the number of

samples within a particular bin, corresponding to the y axis on

the right.
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SHIPS-GSMaP could improve, to some extent, the

overforecasting of the TD. A statistical verification

for all TD cases also confirmed the same trend (not

shown), resulting in the suppression of overforecasting

of TD cases (Fig. 5a).

The above result can be interpreted as follows.

Statistically, within the linear regression framework,

the intensification rate is proportional to OHC. In

reality, however, TDs do not necessarily start in-

tensifying shortly after their genesis, in particular

when they have no organized convection around the

storm center, no matter how high OHC is. As a result,

SHIPS forecasts for TD cases tend to have negative

biases (i.e., overforecasting) (Fig. 5a). This trend may

be partly due to the fact that the training samples used

did not include sufficient TD cases (Fig. 1a). None-

theless, the multiplication of the axisymmetry by

OHC can reasonably contribute to an intensity

change: AXIS does not contribute to intensification

when OHC is high but the axisymmetry is small, like

the case of Typhoon Fitow (2013), and AXIS con-

tributes to intensification when both OHC and the

axisymmetry are high. Therefore, we found that the

construction of nonlinear predictors using environ-

mental conditions and inner-core features is impor-

tant to effectively incorporate rainfall and structural

information into the framework of a multiple linear

regression.

Besides TD cases, the addition of the new predictors

contributed to the suppression of overforecasting of

monsoon-gyre-type TCs. Typhoon Nakri (2014) was a

typical monsoon-gyre-type TC, which tends not to in-

tensify greatly (Fig. 10). The intensity at 0000 UTC

FIG. 8. (a) As in Fig. 3b, but for the new predictors without the multiplication of OHC.

(b) As in Fig. 2a, but for only the new predictors with the multiplication of OHC. (c) As in

Fig. 2a, but for only the new predictors without the multiplication of OHC.

FIG. 9. (a) Intensity forecasts of the JMA GSM, SHIPS-Base,

and SHIPS-GSMaP for a TD initialized at 1200 UTC 29 Sep 2013.

Best track intensity is also plotted. (b) Contributions of SHIPS

predictors (COHC and AXIS) to intensity changes shown in

(a) during the period of FT 5 6–72 h.
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31 July 2014 (0900 Japan standard time) was a Pmin of

990hPa (Fig. 10a) and had a 10-min Vmax of 40 kt,

with a 30-kt radius of 700 km to the southeast and 500km

to the northwest. Although the size was relatively large,

no organized convection occurred around the center

(24.48N, 127.18E) (Fig. 10b), and Pmin fell by only

10 hPa after 0000 UTC 31 July (Fig. 10c). SHIPS-Base

initialized at 1200 UTC 30 July, however, forecast

FIG. 10. (a) Weather chart at 0000 UTC 31 Jul 2014 provided by JMA. (b) Infrared

brightness temperatures (at 10.3–11.3mm) from the Multifunctional Transport Satellite-2

(MTSAT-2) geostationary satellite at 0000UTC31 Jul 2014. (c)As in Fig. 9a, but for Typhoon

Nakri (2014) initialized at 1200 UTC 30 Jul. Because Nakri weakened to a TD at FT 5 90 h

(0600 UTC 3 Aug 2014) and dissipated at FT 5 114 h (0600 UTC 4 Aug 2014), there was no

best track intensity after FT5 108 h. (d) As in Fig. 3b, but for TCs with longestR30. 450 km

just when they reach TS strength, including Typhoons Leepi (2013), Man-yi (2013), Pabuk

(2013), Nakri (2014), Choi-wan (2015), and Omais (2016).
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intensification up to 967 hPa, because SSTs around the

TC were greater than 298C, and the vertical wind shear

(SHDC) along the track was ;5ms21. In contrast, the

forecast of SHIPS-GSMaP was very good. All newly

added predictors contributed to the suppression of the

decrease in Pmin in the first half of the forecast period

(not shown). We also selected similar TCs to Typhoon

Nakri (2014) by using a simple definition of the largest

R30 . 450 km just when the TCs reach TS strength. A

statistical verification of forecasts for those TCs

showed a marked improvement in SHIPS-GSMaP

(Fig. 10d), although the number of samples was too

small to have statistical significance.

In contrast, as shown in Fig. 6, SHIPS-GSMaP yielded

slightly improved forecast skill for intensifying TCs. In

the case of TyphoonNoul (2015) (Fig. 11a), which started

to intensify at FT 5 6h, then weakened after FT 5 24h,

there was little difference in the forecasts between

SHIPS-GSMaP and SHIPS-Base during the intensifica-

tion period. This result may be attributed to the slight

correlation between the intensity change in the next 12–

48h and axisymmetry at current intensities , 960hPa

(see Fig. 7 in Shimada et al. 2017). In fact, compared to

SHIPS-Base, AXIS contributed to the decrease in Pmin

in SHIPS-GSMaP, but was offset by an enhanced in-

crease in Pmin from the MSLP predictor (i.e., Pmin at

FT 5 0 h) and a weakened decrease in Pmin from the

COHC predictor (Fig. 11b). This result is consistent with

the fact that MAEs were not decreased by the new pre-

dictors at initial intensities , 960hPa (Fig. 7a).

c. Real-time forecasts

The results of real-time forecasts showed that the

improvement rate of Pmin forecasts in real-time SHIPS-

GSMaP was slightly decreased, compared to SHIPS-

GSMaP (Fig. 12). The improvement for Pmin during the

period FT 5 6–48 h was statistically significant at the

95% confidence level. The Vmax forecast was slightly

improved during the period FT 5 12–90 h, though the

improvement was not statistically significant at the 95%

confidence level. These results indicate the feasibility of

SHIPS-GSMaP for operational use in real time.

The fact that SHIPS with the use of the GSMaP re-

analysis product was superior to that with the use of the

near-real-time GSMaP product suggests that more ac-

curate rainfall and structural information can lead to a

better intensity forecast and that the increase in the

number of microwave satellites will lead to further im-

provement in real-time SHIPS-GSMaP. In this sense,

the Time-Resolved Observations of Precipitation Struc-

ture and Storm Intensity with a Constellation of Small-

sats (TROPICS) mission (Blackwell et al. 2018) will

observe the precipitation distribution at high temporal

resolution (;40min on average) and would be expected

to further improve the accuracy of real-time SHIPS-

GSMaP in the future, if such data can be made available

in near–real time.

4. Discussion

Hakim (2013) and Brown and Hakim (2013) demon-

strated, using long-term simulated TC data in a situation

free of the effects of environmental variability, that the

intrinsic predictability time scale for mature, steady-

state TCs was 2–3 days. Their findings are consistent

with our results showing that the improvement within

;3 days was statistically significant at the 95% level. The

fact that a few percent of improvement was retained

after FT 5 3 days in this study might be related to the

differences in the forecast samples: the samples used in

this study include a lot of weak initial TCs (Fig. 7a) that

intensified afterward, whereas the samples used by

Hakim (2013) and Brown and Hakim (2013) consist of

mature, steady-state TCs.

The greatest improvement was obtained during a

period of FT 5 24–36h, not a period of FT 5 6–18h.

One possible reason for this is the impact of initial in-

tensity errors on the improvement in SHIPS. As shown

in Fig. 3a, an MAE of;2.5 hPa or 2.5 kt existed at FT5
0 h in our experiment. This error can lead to errors in

some of the predictors (e.g., PER, MSLP, OSLP, POT,

FIG. 11. (a) As in Fig. 9a, but for TyphoonNoul (2015) initialized

at 0600 UTC 9 May 2015. Noul underwent extratropical transition

at FT5 72 h (0600 UTC 12May 2015). (b) Contributions of SHIPS

predictors (COHC, MSLP, and AXIS) to intensity changes shown

in (a).
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and POT2), which have large coefficients within FT 5
24h (Fig. 2). Thus, without improvement in the initial

intensity errors, it is likely to be difficult to realize a large

improvement during a period of FT 5 6–18h. This

speculation is consistent with the suggestion byEmanuel

and Zhang (2016), who demonstrated, using a simple

coupled ocean–atmosphere model, that errors in initial

intensity can dominantly affect the accuracy of intensity

forecasts over the first 2–4 days.

Xu and Wang (2018) showed that an initial vortex with

largerRMWandhigher inertial stability outside theRMW

takes longer to humidify the inner-core region for initial

spinup due to the larger volume inside the RMW and

weaker upward motion in the boundary layer. Emanuel

and Zhang (2017) demonstrated that uncertainty in initial

inner-core moisture information can dominantly affect the

predictability of intensity forecasts up to several days

ahead. These studies are consistent with the findings of this

study that the addition of rainfall and structural features

could further improve the accuracy of SHIPS that pri-

marily uses environmental conditions.

Although improvement was obtained, the coefficients

of the new predictors were relatively small, except for

AXIS (Fig. 2), and the improvement for intensifying

TCs was not high enough to improve the RI forecasts

(e.g., Figs. 6 and 7b). Shimada et al. (2017) found a re-

lationship between the axisymmetry and subsequent

intensity change only during the intensification stage.

Carrasco et al. (2014) also excluded weakening cases in

their study. Cecil and Zipser (1999) showed that inner-

core areal-mean 85-GHz Tb is highly correlated with

future intensity (correlation coefficient ;0.7), but only

slightly correlated with future intensity change (;0.25).

These facts may explain the limited improvement in the

linear regression framework between structural features

and future intensity change.

5. Summary

The current version of SHIPS predicts TC intensity

mainly using predictors associated with environmental

conditions, without using rainfall and structural features

of TCs. Recent studies, however, have pointed out that

inner-core structural conditions, such as the axisymme-

try of the rainfall distribution, also govern subsequent

intensity change. We examined the degree to which the

accuracy could be improved when rainfall and structural

features of TCs were added to SHIPS for the

WNP basin.

We derived new predictors mainly from the hourly

GSMaP product, which is a microwave satellite-based

rainfall estimate dataset. The predictors derived from

the GSMaP product for the Pmin forecasts include the

axisymmetry of rainfall structure within 300km of the

TC center, rain areal coverage within a radius of 100–

300 km, the radius of maximum azimuthal mean rainfall,

and the total volumetric rain within a radius of 100 km.

Among these predictors, each value of the axisymmetry

and the total volumetric rainfall was multiplied by OHC

along a forecast track. In addition, the Rossby number,

defined as the maximum wind divided by the product of

the radius of 30-kt wind speed and the Coriolis param-

eter, was incorporated. Previous studies used predictors

based on Tb data such as mean Tb and maximum Tb

around the TC, whereas in this study we used predictors

associated with physical features that were relevant to

the intensity change found in previous studies. This

modification facilitates the interpretation of the SHIPS

forecasts.

SHIPS coefficients indicated that among the five new

predictors, the axisymmetry multiplied by OHC (named

AXIS) had the largest impact on the intensity change.

First, we examined the degree to which the new pre-

dictors could improve the accuracy. In this examination,

FIG. 12. Percent improvement in real-time SHIPS-GSMaP MAEs relative to SHIPS-Base

MAEs from 2013 to 2016 in theWNP basin (blue line, Pmin; red line, Vmax). Bold lines with

filled circles indicate statistically significant differences at the 95% level. For reference, the

percent improvement of SHIPS-GSMaP MAEs shown in Fig. 3b is also indicated by the thin

light blue (Pmin) and brown (Vmax) lines.
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the new predictors were derived from the GSMaP re-

analysis product and best track data. The forecast results

out to 5 days for TCs over the ocean showed that the

addition of the new predictors for Pmin produced a 2%–

7% improvement with a maximum improvement of just

over 6% at FT 5 24–36h. The improvement for the

Vmax forecast was over 3% during a period of FT5 18–

54 h. For Pmin forecasts, substantial improvements (of

up to 20%) were obtained for steady-state TCs and TD

cases. AXIS contributed to the suppression of over-

forecasting of TD cases with low axisymmetry over high

OHC regions. For both the Pmin and Vmax forecasts,

the improvement rate was 1%–6% for intensifying TCs,

while little improvement was found for weakening TCs.

We also performed a real-time forecast experiment, in

which the new predictors were derived from the near-

real-time hourly GSMaP product and real-time TC data.

The results demonstrated that even the use of the near-

real-time GSMaP product can improve the accuracy of

SHIPS, confirming the feasibility of real-time SHIPS

with the new predictors for operational use.

Acknowledgments.Wearedeeplygrateful toDrs. J.Kaplan,

J. Knaff, and B. Sampson. Gratitude is also extended to

colleagues at RSMC Tokyo. The authors thank three

anonymous reviewers for valuable suggestions and

comments. This work was supported by the Eighth

Precipitation Measuring Mission (PMM) of JAXA.

The opinions in this paper are those of the authors and

should not be regarded as official RSMC Tokyo views.

REFERENCES

Aberson, S. D., and M. DeMaria, 1994: Verification of a nested bar-

otropic hurricane track forecast model (VICBAR). Mon. Wea.

Rev., 122, 2804–2815, https://doi.org/10.1175/1520-0493(1994)

122,2804:VOANBH.2.0.CO;2.

Alvey, G. R., III, J. Zawislak, and E. Zipser, 2015: Precipitation

properties observed during tropical cyclone intensity change.

Mon. Wea. Rev., 143, 4476–4492, https://doi.org/10.1175/

MWR-D-15-0065.1.

Aonashi, K., and G. Liu, 2000: Passive microwave precipitation

retrievals using TMI during the baiu period of 1998. Part I:

Algorithm description and validation. J. Appl. Meteor., 39,

2024–2037, https://doi.org/10.1175/1520-0450(2000)039,2024:

PMPRUT.2.0.CO;2.

——, and Coauthors, 2009: GSMaP passive microwave pre-

cipitation retrieval algorithm: Algorithm description and val-

idation. J. Meteor. Soc. Japan, 87A, 119–136, https://doi.org/

10.2151/jmsj.87A.119.

Bankert, R. L., and P. M. Tag, 2002: An automated method to es-

timate tropical cyclone intensity using SSM/I imagery. J. Appl.

Meteor., 41, 461–472, https://doi.org/10.1175/1520-0450(2002)

041,0461:AAMTET.2.0.CO;2.

Blackwell, W. J., and Coauthors, 2018: An overview of the

TROPICS NASA Earth Venture Mission. Quart. J. Roy.

Meteor. Soc., https://doi.org/10.1002/qj.3290, in press.

Brown, B. R., and G. J. Hakim, 2013: Variability and pre-

dictability of a three-dimensional hurricane in statistical

equilibrium. J. Atmos. Sci., 70, 1806–1820, https://doi.org/

10.1175/JAS-D-12-0112.1.

Cangialosi, J. P., and J. L. Franklin, 2017: 2016 hurricane season.

National Hurricane Center Forecast Verification Rep., 72 pp.,

www.nhc.noaa.gov/verification/pdfs/Verification_2016.pdf.

Carrasco, C., C. Landsea, and Y. Lin, 2014: The influence of

tropical cyclone size on its intensification. Wea. Forecasting,

29, 582–590, https://doi.org/10.1175/WAF-D-13-00092.1.

Cecil, D. J., and E. J. Zipser, 1999: Relationships between tropical

cyclone intensity and satellite-based indicators of inner core

convection: 85-Ghz ice-scattering and lightning. Mon. Wea.

Rev., 127, 103–123, https://doi.org/10.1175/1520-0493(1999)

127,0103:RBTCIA.2.0.CO;2.

Chen, D. Y.-C., K. K. W. Cheung, and C.-S. Lee, 2011: Some im-

plications of core regime wind structures in western North

Pacific tropical cyclones. Wea. Forecasting, 26, 61–75, https://

doi.org/10.1175/2010WAF2222420.1.

DeMaria, M., 2010: Tropical cyclone intensity change pre-

dictability estimates using a statistical-dynamical model.

29th Conf. on Hurricanes and Tropical Meteorology, Tucson,

AZ, Amer. Meteor. Soc., 9C.5, https://ams.confex.com/ams/

29Hurricanes/techprogram/paper_167916.htm.

——, and J. Kaplan, 1994: A statistical hurricane intensity prediction

scheme (SHIPS) for the Atlantic basin. Wea. Forecasting,

9, 209–220, https://doi.org/10.1175/1520-0434(1994)009,0209:

ASHIPS.2.0.CO;2.

——, and ——, 1999: An updated Statistical Hurricane Intensity

Prediction Scheme (SHIPS) for the Atlantic and eastern North

Pacific basins. Wea. Forecasting, 14, 326–337, https://doi.org/

10.1175/1520-0434(1999)014,0326:AUSHIP.2.0.CO;2.

——, M. Mainelli, L. K. Shay, J. A. Knaff, and J. Kaplan, 2005:

Further improvements to the Statistical Hurricane Intensity

Prediction Scheme (SHIPS). Wea. Forecasting, 20, 531–543,

https://doi.org/10.1175/WAF862.1.

——,C.R. Sampson, J.A.Knaff, andK.D.Musgrave, 2014: Is tropical

cyclone intensity guidance improving? Bull. Amer. Meteor. Soc.,

95, 387–398, https://doi.org/10.1175/BAMS-D-12-00240.1.

Emanuel, K., and F. Zhang, 2016: On the predictability and error

sources of tropical cyclone intensity forecasts. J. Atmos. Sci.,

73, 3739–3747, https://doi.org/10.1175/JAS-D-16-0100.1.

——, and ——, 2017: The role of inner-core moisture in tropical

cyclone predictability and practical forecast skill. J. Atmos.

Sci., 74, 2315–2324, https://doi.org/10.1175/JAS-D-17-0008.1.

Hakim, G. J., 2013: The variability and predictability of axisym-

metric hurricanes in statistical equilibrium. J. Atmos. Sci., 70,

993–1005, https://doi.org/10.1175/JAS-D-12-0188.1.

Hendricks, E. A., M. S. Peng, B. Fu, and T. Li, 2010: Quantify-

ing environmental control on tropical cyclone intensity

change. Mon. Wea. Rev., 138, 3243–3271, https://doi.org/

10.1175/2010MWR3185.1.

Hoshino, S., and T. Nakazawa, 2007: Estimation of tropical cy-

clone’s intensity using TRMM/TMI brightness temperature

data. J. Meteor. Soc. Japan, 85, 437–454, https://doi.org/

10.2151/jmsj.85.437.

Ishii, M., A. Shouji, S. Sugimoto, and T. Matsumoto, 2005: Ob-

jective analyses of sea-surface temperature and marine me-

teorological variables for the 20th century using ICOADS and

the Kobe Collection. Int. J. Climatol., 25, 865–879, https://

doi.org/10.1002/joc.1169.

Jarvinen, B. R., and C. J. Neumann, 1979: Statistical forecasts

of tropical cyclone intensity for the North Atlantic basin. NOAA

1602 WEATHER AND FORECAST ING VOLUME 33

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 09/26/22 04:45 PM UTC

https://doi.org/10.1175/1520-0493(1994)122<2804:VOANBH>2.0.CO;2
https://doi.org/10.1175/1520-0493(1994)122<2804:VOANBH>2.0.CO;2
https://doi.org/10.1175/MWR-D-15-0065.1
https://doi.org/10.1175/MWR-D-15-0065.1
https://doi.org/10.1175/1520-0450(2000)039<2024:PMPRUT>2.0.CO;2
https://doi.org/10.1175/1520-0450(2000)039<2024:PMPRUT>2.0.CO;2
https://doi.org/10.2151/jmsj.87A.119
https://doi.org/10.2151/jmsj.87A.119
https://doi.org/10.1175/1520-0450(2002)041<0461:AAMTET>2.0.CO;2
https://doi.org/10.1175/1520-0450(2002)041<0461:AAMTET>2.0.CO;2
https://doi.org/10.1002/qj.3290
https://doi.org/10.1175/JAS-D-12-0112.1
https://doi.org/10.1175/JAS-D-12-0112.1
http://www.nhc.noaa.gov/verification/pdfs/Verification_2016.pdf
https://doi.org/10.1175/WAF-D-13-00092.1
https://doi.org/10.1175/1520-0493(1999)127<0103:RBTCIA>2.0.CO;2
https://doi.org/10.1175/1520-0493(1999)127<0103:RBTCIA>2.0.CO;2
https://doi.org/10.1175/2010WAF2222420.1
https://doi.org/10.1175/2010WAF2222420.1
https://ams.confex.com/ams/29Hurricanes/techprogram/paper_167916.htm
https://ams.confex.com/ams/29Hurricanes/techprogram/paper_167916.htm
https://doi.org/10.1175/1520-0434(1994)009<0209:ASHIPS>2.0.CO;2
https://doi.org/10.1175/1520-0434(1994)009<0209:ASHIPS>2.0.CO;2
https://doi.org/10.1175/1520-0434(1999)014<0326:AUSHIP>2.0.CO;2
https://doi.org/10.1175/1520-0434(1999)014<0326:AUSHIP>2.0.CO;2
https://doi.org/10.1175/WAF862.1
https://doi.org/10.1175/BAMS-D-12-00240.1
https://doi.org/10.1175/JAS-D-16-0100.1
https://doi.org/10.1175/JAS-D-17-0008.1
https://doi.org/10.1175/JAS-D-12-0188.1
https://doi.org/10.1175/2010MWR3185.1
https://doi.org/10.1175/2010MWR3185.1
https://doi.org/10.2151/jmsj.85.437
https://doi.org/10.2151/jmsj.85.437
https://doi.org/10.1002/joc.1169
https://doi.org/10.1002/joc.1169


Tech. Memo. NWS NHC-10, 22 pp., http://www.nhc.noaa.gov/

pdf/NWS-NHC-1979-10.pdf.

JAXA, 2018a: JAXA global rainfall watch. Japan Aerospace

Exploration Agency, accessed 8 February 2018, http://

sharaku.eorc.jaxa.jp/GSMaP/index.htm.

——, 2018b: JAXA realtime rainfall watch. Japan Aerospace

Exploration Agency, accessed 8 February 2018, http://

sharaku.eorc.jaxa.jp/GSMaP_NOW/index.htm.

Jiang, H., and E. M. Ramirez, 2013: Necessary conditions for

tropical cyclone rapid intensification as derived from 11 years

of TRMM data. J. Climate, 26, 6459–6470, https://doi.org/

10.1175/JCLI-D-12-00432.1.

JMA, 2018: JMA numerical weather prediction. Japan Meteoro-

logical Agency, http://www.jma.go.jp/jma/jma-eng/jma-center/

nwp/nwp-top.htm.

Jones, T. A., and D. J. Cecil, 2007: SHIPS-MI forecast analysis

of Hurricanes Claudette (2003), Isabel (2003), and Dora (1999).

Wea. Forecasting, 22, 689–707, https://doi.org/10.1175/WAF1016.1.

——, ——, and M. DeMaria, 2006: Passive-microwave-enhanced

Statistical Hurricane Intensity Prediction Scheme. Wea.

Forecasting, 21, 613–635, https://doi.org/10.1175/WAF941.1.

——, ——, and J. Dunion, 2007: The environmental and inner-

core conditions governing the intensity of Hurricane Erin (2007).

Wea. Forecasting, 22, 708–725, https://doi.org/10.1175/WAF1017.1.

Kieper, M., and H. Jiang, 2012: Predicting tropical cyclone rapid

intensification using the 37GHz ring pattern identified from

passive microwave measurements. Geophys. Res. Lett., 39,

L13804, https://doi.org/10.1029/2012GL052115.

Knaff, J. A., M. DeMaria, B. Sampson, and J. M. Gross, 2003: Statis-

tical, 5-day tropical cyclone intensity forecasts derived from cli-

matology and persistence. Wea. Forecasting, 18, 80–92, https://

doi.org/10.1175/1520-0434(2003)018,0080:SDTCIF.2.0.CO;2.

——, C. R. Sampson, andM.DeMaria, 2005: An operational statistical

typhoon intensity prediction scheme for thewesternNorth Pacific.

Wea. Forecasting, 20, 688–699, https://doi.org/10.1175/WAF863.1.

Kobayashi, S., and Coauthors, 2015: The JRA-55 reanalysis:

General specifications and basic characteristics. J. Meteor.

Soc. Japan, 93, 5–48, https://doi.org/10.2151/jmsj.2015-001.

Kubota, T., and Coauthors, 2007: Global precipitation map

using satellite-borne microwave radiometers by the GSMaP

project: Production and validation. IEEE Trans. Geosci. Remote

Sens., 45, 2259–2275, https://doi.org/10.1109/TGRS.2007.895337.

——, S. Shige, K.Aonashi, andK.Okamoto, 2009:Development of

nonuniform beamfilling correction method in rainfall re-

trievals for passive microwave radiometers over ocean using

TRMM observations. J. Meteor. Soc. Japan, 87A, 153–164,

https://doi.org/10.2151/jmsj.87A.153.

Kurihara, Y., T. Sakurai, and T. Kuragano, 2006: Global daily sea

surface temperature analysis using data from satellite micro-

wave radiometer, satellite infrared radiometer and in-situ

observations (in Japanese). Wea. Bull., 73, S1–S18.

Lander, M. A., 1994: Description of a monsoon gyre and its effects

on the tropical cyclones in the western North Pacific during

August 1991. Wea. Forecasting, 9, 640–654, https://doi.org/

10.1175/1520-0434(1994)009,0640:DOAMGA.2.0.CO;2.

——, 1996: Specific tropical cyclone track types and unusual

tropical cyclone motions associated with a reverse-oriented

monsoon trough in the western North Pacific. Wea. Fore-

casting, 11, 170–186, https://doi.org/10.1175/1520-0434(1996)

011,0170:STCTTA.2.0.CO;2.

Miyamoto, Y., and T. Takemi, 2013: A transition mechanism for the

axisymmetric spontaneous intensification of tropical cyclones.

J.Atmos. Sci.,70, 112–129, https://doi.org/10.1175/JAS-D-11-0285.1.

——, and ——, 2015: A triggering mechanism for rapid in-

tensification of tropical cyclones. J. Atmos. Sci., 72, 2666–2681,

https://doi.org/10.1175/JAS-D-14-0193.1.

Rao, G. V., and P. D. MacArthur, 1994: The SSM/I estimated

rainfall amounts of tropical cyclones and their potential in

predicting the cyclone intensity changes.Mon. Wea. Rev., 122,

1568–1574, https://doi.org/10.1175/1520-0493(1994)122,1568:

TSERAO.2.0.CO;2.

——, and J. H. McCoy, 1997: SSM/I measured microwave bright-

ness temperatures (TB’s), anomalies of TB’s, and their re-

lationship to typhoon intensification. Nat. Hazards, 15, 1–19,

https://doi.org/10.1023/A:1007963829299.

Rappaport, E. N., J.-G. Jiing, C. W. Landsea, S. T. Murillo, and

J. L. Franklin, 2012: The Joint Hurricane Test Bed: Its first

decade of tropical cyclone research-to-operations activities

reviewed. Bull. Amer. Meteor. Soc., 93, 371–380, https://

doi.org/10.1175/BAMS-D-11-00037.1.

Sampson, C. R., and J. A. Knaff, 2014: Advances in intensity

guidance. Eighth Int. Workshop on Tropical Cyclones, Jeju,

South Korea, WMO, https://www.wmo.int/pages/prog/arep/

wwrp/new/documents/Topic2.7_AdvancesinIntensityGuidance.pdf.

Schumacher, A., M. DeMaria, and J. Knaff, 2013: Summary of the

new statistical-dynamical intensity forecast models for the

Indian Ocean and Southern Hemisphere and resulting per-

formance. JTWCProject Final Rep., 11 pp., http://rammb.cira.

colostate.edu/research/tropical_cyclones/ships/docs/JTWC_

project_final_report_oct_2013.docx.

Shige, S., and Coauthors, 2009: The GSMaP precipitation retrieval

algorithm for microwave sounders. Part I: Over-ocean algo-

rithm. IEEE Trans. Geosci. Remote Sens., 47, 3084–3097,

https://doi.org/10.1109/TGRS.2009.2019954.

Shimada, U., K.Aonashi, andY.Miyamoto, 2017: Tropical cyclone

intensity change and axisymmetricity deduced from GSMaP.

Mon. Wea. Rev., 145, 1003–1017, https://doi.org/10.1175/

MWR-D-16-0244.1.

Ushio, T., andCoauthors, 2009:AKalmanfilter approach to theGlobal

Satellite Mapping of Precipitation (GSMaP) from combined

passive microwave and infrared radiometric data. J. Meteor. Soc.

Japan, 87A, 137–151, https://doi.org/10.2151/jmsj.87A.137.

Usui, N., S. Ishizaki, Y. Fujii, H. Tsujino, T. Yasuda, and

M. Kamachi, 2006: Meteorological Research Institute multi-

variate ocean variational estimation (MOVE) system: Some

early results. Adv. Space Res., 37, 806–822, https://doi.org/

10.1016/j.asr.2005.09.022.

Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences.

2nd ed. Academic Press, 627 pp.

Xu, J., and Y. Wang, 2018: Effect of the initial vortex structure on in-

tensification of a numerically simulated tropical cyclone. J.Meteor.

Soc. Japan, 96, 111–126, https://doi.org/10.2151/jmsj.2018-014.

Yamaguchi, M., J. Ishida, H. Sato, and M. Nakagawa, 2017:

WGNE intercomparison of tropical cyclone forecasts by

operational NWP models: A quarter-century and beyond.

Bull. Amer. Meteor. Soc., 98, 2337–2349, https://doi.org/

10.1175/BAMS-D-16-0133.1.

——, H. Owada, U. Shimada, M. Sawada, T. Iriguchi, K. D.

Musgrave, and M. DeMaria, 2018: Tropical cyclone intensity

prediction in the western North Pacific basin using SHIPS

and JMA/GSM. SOLA, 14, 138–143, https://doi.org/10.2151/

sola.2018-024.

Zagrodnik, J. P., and H. Jiang, 2014: Rainfall, convection, and

latent heating distributions in rapidly intensifying tropical

cyclones. J. Atmos. Sci., 71, 2789–2809, https://doi.org/

10.1175/JAS-D-13-0314.1.

DECEMBER 2018 SH IMADA ET AL . 1603

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 09/26/22 04:45 PM UTC

http://www.nhc.noaa.gov/pdf/NWS-NHC-1979-10.pdf
http://www.nhc.noaa.gov/pdf/NWS-NHC-1979-10.pdf
http://sharaku.eorc.jaxa.jp/GSMaP/index.htm
http://sharaku.eorc.jaxa.jp/GSMaP/index.htm
http://sharaku.eorc.jaxa.jp/GSMaP_NOW/index.htm
http://sharaku.eorc.jaxa.jp/GSMaP_NOW/index.htm
https://doi.org/10.1175/JCLI-D-12-00432.1
https://doi.org/10.1175/JCLI-D-12-00432.1
http://www.jma.go.jp/jma/jma-eng/jma-center/nwp/nwp-top.htm
http://www.jma.go.jp/jma/jma-eng/jma-center/nwp/nwp-top.htm
https://doi.org/10.1175/WAF1016.1
https://doi.org/10.1175/WAF941.1
https://doi.org/10.1175/WAF1017.1
https://doi.org/10.1029/2012GL052115
https://doi.org/10.1175/1520-0434(2003)018<0080:SDTCIF>2.0.CO;2
https://doi.org/10.1175/1520-0434(2003)018<0080:SDTCIF>2.0.CO;2
https://doi.org/10.1175/WAF863.1
https://doi.org/10.2151/jmsj.2015-001
https://doi.org/10.1109/TGRS.2007.895337
https://doi.org/10.2151/jmsj.87A.153
https://doi.org/10.1175/1520-0434(1994)009<0640:DOAMGA>2.0.CO;2
https://doi.org/10.1175/1520-0434(1994)009<0640:DOAMGA>2.0.CO;2
https://doi.org/10.1175/1520-0434(1996)011<0170:STCTTA>2.0.CO;2
https://doi.org/10.1175/1520-0434(1996)011<0170:STCTTA>2.0.CO;2
https://doi.org/10.1175/JAS-D-11-0285.1
https://doi.org/10.1175/JAS-D-14-0193.1
https://doi.org/10.1175/1520-0493(1994)122<1568:TSERAO>2.0.CO;2
https://doi.org/10.1175/1520-0493(1994)122<1568:TSERAO>2.0.CO;2
https://doi.org/10.1023/A:1007963829299
https://doi.org/10.1175/BAMS-D-11-00037.1
https://doi.org/10.1175/BAMS-D-11-00037.1
https://www.wmo.int/pages/prog/arep/wwrp/new/documents/Topic2.7_AdvancesinIntensityGuidance.pdf
https://www.wmo.int/pages/prog/arep/wwrp/new/documents/Topic2.7_AdvancesinIntensityGuidance.pdf
http://rammb.cira.colostate.edu/research/tropical_cyclones/ships/docs/JTWC_project_final_report_oct_2013.docx
http://rammb.cira.colostate.edu/research/tropical_cyclones/ships/docs/JTWC_project_final_report_oct_2013.docx
http://rammb.cira.colostate.edu/research/tropical_cyclones/ships/docs/JTWC_project_final_report_oct_2013.docx
https://doi.org/10.1109/TGRS.2009.2019954
https://doi.org/10.1175/MWR-D-16-0244.1
https://doi.org/10.1175/MWR-D-16-0244.1
https://doi.org/10.2151/jmsj.87A.137
https://doi.org/10.1016/j.asr.2005.09.022
https://doi.org/10.1016/j.asr.2005.09.022
https://doi.org/10.2151/jmsj.2018-014
https://doi.org/10.1175/BAMS-D-16-0133.1
https://doi.org/10.1175/BAMS-D-16-0133.1
https://doi.org/10.2151/sola.2018-024
https://doi.org/10.2151/sola.2018-024
https://doi.org/10.1175/JAS-D-13-0314.1
https://doi.org/10.1175/JAS-D-13-0314.1

